Supervised fine-tuning (SFT) is a method used in machine learning to improve the performance of a pre-trained model. The model is initially trained on a large dataset, then fine-tuned on a smaller, specific dataset. This allows the model to maintain the general knowledge learned from the large dataset while adapting to the specific characteristics of the smaller dataset.
For instance, a pre-trained language model can be fine-tuned on a dataset of legal documents to improve its performance in legal text classification.